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Abstract

Motivation: ECG noise reduction is an essential step
in the ECG preprocessing pipeline. In particular, the qual-
ity of beat detection can be affected by several artifacts.
The variety of available methods ranges from filter-based
techniques (e.g. Butterworth or FIR), signal decomposi-
tion (e.g. wavelets) to neural networks (Cycle-GAN).

Methods: 12-lead resting ECGs from the SFB/TR19
study on inflammatory dilated cardiomyopathy (n=704)
and from the Study of Health in Pomerania (n=17,717)
were preprocessed with 14 different methods to evaluate
the accuracy of heartbeat detection methods in relation to
the chosen method for preprocessing. Open source sig-
nal libraries (neurokit2, py-ecg-detectors, WFDB among
others) with 34 detectors were evaluated. Sensitivity and
Positive Predictive Values (PPV) were computed for each
combination of preprocessing and detection method in a
train/test scheme. Annotations were corrected for fixed de-
lays and scored at a tolerance of 50ms.

Results and conclusion: Eplimited performed best,
regardless of the chosen preprocessing method. For dis-
eased ECGs, in Kalidas2017 it was seen an improvement
in performance from 0.713 to 0.876 and from 0.778 to
0.879 for PPV and sensitivity respectively. Best results can
be achieved with ECG leads V3, V5 and V6.

1. Introduction

Ultrasound and Electrocardiography (ECG) are the most
non-invasive techniques used to perform the diagnosis of
cardiac diseases [1]. However, ECG is the first, possi-
bly cheapest option to identify electrical anomalies in the
heart – for example in the case of Atrial Fibrillation (AF)
which is the most common cardiac arrhythmia. However,
it is estimated that approximately 33% of the population
remains undiagnosed, since in the early stage of this con-
dition, events occur at random and are self-terminating [2].
In order to make an accurate diagnosis with ECGs, it is
usually necessary to use pre-processing methods to remove
noise caused by the power line interference, motion ar-

tifacts, thermal noise, etc., before actually analyzing the
heart rhythm or ECG delinearization (e.g., [3]). Informa-
tion extracted from ECGs for diagnosis of cardiac arrhyth-
mia includes the computation of the segments and intervals
and their variability, or the analysis of P-QRS-T waves.
This is usually processed separately: methodologies are
divided into methods for noise reduction and methods for
detecting patterns in the recordings or characterizing heart
health (e.g., [4] for a review of methods). Our study fo-
cuses on the detection of heart beats in relation to the cho-
sen preprocessing method. Respectively, we are searching
for the best combination of the methods to suppress noise
and beat detection methods in order to increase the accu-
racy in diagnostic tasks.

2. Methods

2.1. Preprocessing methods

We applied 14 different methods to preprocess the
ECGs: Corcodan [5] includes four steps: spike re-
moval, low-pass Butterworth filter (60Hz cutoff), base-
line drift removal using local linear estimates, substrac-
tion of trimmed average. From Neurokit2 [6] we applied:
Neurokit (default) (high-pass 5th order Butterworth filter
with 0.5Hz cutoff, 50Hz powerline removal), pantomp-
kins1985 (1st order Butterworth filters, bandpass cutoffs
5Hz and 15Hz [7]), hamilton2002 (1st order Butterworth
filter, bandpass cutoffs 8Hz and 16Hz [8]), biosppy (FIR
filter, cutoffs 3Hz and 45Hz [9]), elgendi2010 (2nd order
Butterworth filter, bandpass cutoffs 8Hz and 20Hz [10]),
engzeemod2012 (4th order Butterworth filter, bandstop
cutoffs of 48Hz and 52Hz [11]). Two additional 5th order
Butterworth filter were applied with Scipy.signal, bandpass
cutoffs frequencies 3Hz–20Hz and 0.05Hz–42Hz re-
spectively. We further used three wavelet denoising meth-
ods (Haar, Daubechies 4, Symlets 8): pywt was used for
1-D stationary wavelet transform using the Haar function
(with detail coefficients at the 2nd level of decomposition).
From skimage.restoration we utilized the denoise wavelet
function with BayesShrink method to estimate the soft
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wavelet threshold for every single wavelet sub-band with
3 levels of wavelet decomposition of wavelets db4 and
sym8. As a representative of newly emerging techniques,
we make use of a Cycle-GAN [12]. This method performs
a blind ECG restoration by the application of the cycle-
consistent generative adversarial networks for noise-free
ECG recovery. For this application two Self-ONNs are
used as generator and discriminator. While the generator
is used to learn how to transform the corrupted segment
(with noise) to a clean one, on the other hand the discrimi-
nator is used to learn how to transform a clean segment to
a corrupted one and will be discarded after training in or-
der to maximize the adversarial loss functions. We used a
pretrained GAN from the authors which works on normal-
ized data. For the scaled version, called Cycleganscaled,
the 5th and 95th quantiles of the raw ECG were used for
a scaling factor in order to reconstruct the amplitude of the
original signal.

2.2. QRS detection methods

The following open source packages and methods were
used for heart beat detection. Neurokit2 (0.1.4.1) [6]:
Pan-Tompkins (1985), Nabian (2018), Zong (2003), Gam-
boa (2008), Martinez (2003), Rodrigues (2021), BioSPPY,
Kalidas (2017), Christov (2004), Elgendi (2010), ProMac,
Hamilton (2002). Py-ecg-detectors (1.3.2) [13]: Hamilton,
Christov, Engelse and Zeelenberg, Pan-Tompkins, Station-
ary Wavelet Transform (Kalidas and Tamil), Elgendi, FIR
matched filter, Zong (wqrs). WFDB for Python (4.0.0) [14,
15]: XQRS, XQRS+learn, xqrs detect, xqrs detect+learn,
gqrs detect. Eplimited (eplimited 1.1 for R) [16]: eplim-
ited without scaling; scaled amplitude using a factor of
1000; scaled using the 10% and 97.5% quantiles of the raw
ECG. As we noticed that Eplimited do not annotate beats
till second 7.5, our methodology for Eplimited was: down-
sampling to 200Hz, concatenation of the mirrored signals,
generation of annotations, and shifting back beat annota-
tions by 7.5 s. ECG2RR (0.1.0) [17]: LSTM-based de-
tector ecg2rr, ecg2rr (threshold=300ms). C-LABPL [18]:
a Pan-Tompkins adaptation. WTdelineator [19]: wavelet-
based ECG delineation.

2.3. Data description & evaluation

12-lead resting ECGs of 10 s length were used from
the following sources: The SFB/TR19 study on inflam-
matory dilated cardiomyopathy [20] includes 704 ECGs
from patients included at the study centre Greifswald, Ger-
many. The recordings contain various cardiac arrhythmia,
e.g., 113 AFIB, 66 AVB, 63 LAA, 110 LBBB. The Study
of Health in Pomerania (SHIP) includes two individual
cohorts with follow-up examinations [21]: SHIP-START
cohort (START-0: n=3546 ECGs, START-1: n=3274,

START-2: n=2314, START-3: n=1713) and SHIP-TREND
cohort (TREND-0: n=4386, TREND-1: n=2484).

For finding the best combinations of preprocessing and
beat detection methods we extracted the positive predic-
tive value and the sensitivity from the resulting annota-
tions in each lead and recording. In the following we
divided the dataset into training: 60% of SFB/TR19 +
SHIP-START (n=11,269), and testing: 40% of SFB/TR19
+ SHIP-TREND (n=7,152). Testing data was used to prove
stability of the chosen combinations. To derive the indi-
vidual true positive, false negative, and false positive num-
bers, reference annotations were needed. For SFB/TR19
we used automated and manually screened annotations that
are stored in Philips SierraECG XML files. For SHIP data,
reference annotations were built using a silver standard:
All annotations generated for the same recording were
Gauss-filtered with a standard deviation (sd) of 100ms,
summed and filtered a second time with sd of 50ms. The
resulting wave was then normalized by to 0 and 1 and
peaks were identified. Peak locations above the thresh-
old of 0.5 were regarded as the true beat locations. By
pairwise comparison of annotations with the created ref-
erence taking a tolerance of 10ms, 25ms, 50ms, 100ms
into account, we counted FN, FP, TP + multiple matches
within the central part of the ECG (first to the ninth sec-
ond). We also searched for systematic shifts of annotations
are corrected for it. Thereafter results were aggregated by
the computation of average sensitivity and positive predic-
tive values (PPV). Individual PPVs were set to 0% and
sensitivity was set to 100% if no beat was detected or if
an error was reported during the detection. A ranking of
combinations was made on the average sum of PPV with
Sensitivity.

3. Results & Conclusion

Table 1 and Figures 1 and 2 are showing the PPV and
Sensitivity at 50ms tolerance. Table 1 shows the best six
detectors with the best two combinations in comparison
with applying the detectors on the raw ECGs in the train-
ing set. Even though we did not change the internal pre-
processing of the detector, we were able to improve the
performance of certain beat detection methods through the
transfer of already preprocessed data, especially in dis-
eased ECGs – with a remarkable improvement in the Neu-
rokit2 method: Kalidas2017 improved PPV from 71.3%
to 87.2%, Sensitivity from 77.8% to 87.5% when using
BioSPPy preprocessing. Best results were achieved with
Eplimited. Figure 1 shows, that good performance can be
achieved with any preprocessing method. Figure 2 shows
the best performing leads: V3, V5, V6. WFDBs learn-
ing options do increase the senstivity of lead III, aVF and
aVL. Furthermore, we see potential to improve the perfor-
mance by adjusting the parameters of either the prepro-
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cessing methods or the internal preprocessing function of
the detectors.
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Table 1. Best 6 detectors on raw data with best 2 preprocessing combinations
Healthy cohort Diseased cohort

Train Test Train Test
SHIP-START SHIP-TREND 60% SFB 40% SFB

Preprocessing Detector PPV/Sens PPV/Sens PPV/Sens PPV/Sens

raw eplimited quantile-scaled .956 / .962 .972 / .979 .930 / .943 .931 / .941
corcodan .957 / .963 .975 / .983 .932 / .946 .932 / .942
biosppy .955 / .962 .973 / .983 .920 / .933 .918 / .928
raw nk2::kalidas2017 .930 / .940 .967 / .970 .715 / .784 .713 / .778
biosppy .954 / .953 .975 / .974 .893 / .898 .872 / .875
neurokit .955 / .954 .975 / .974 .893 / .898 .876 / .879
raw wfdb4::xqrs .941 / .953 .975 / .971 .854 / .874 .842 / .860
corcodan .941 / .953 .975 / .971 .854 / .874 .843 / .860
neurokit .941 / .954 .975 / .964 .865 / .884 .852 / .868
raw nk2::neurokit .954 / .950 .973 / .972 .779 / .738 .768 / .730
corcodan .954 / .952 .973 / .974 .795 / .765 .786 / .756
biosppy .948 / .952 .971 / .974 .796 / .802 .780 / .784
raw wfdb4::xqrs detect+learn .941 / .953 .965 / .976 .854 / .874 .842 / .860
corcodan .941 / .953 .965 / .975 .854 / .874 .843 / .860
neurokit .941 / .954 .964 / .975 .865 / .883 .852 / .868
raw wfdb4::xqrs+learn .941 / .953 .965 / .975 .854 / .874 .842 / .860
corcodan .941 / .953 .964 / .975 .854 / .874 .843 / .860
neurokit .941 / .954 .964 / .975 .865 / .884 .852 / .868

Raw Neurokit/Corcodan PanTomp1985/BioSPPy CycleGAN Hamilton2002 Wavelet-like

0%

25%

50%

75%

100%

0
%

2
5
%

5
0
%

7
5
%

1
0
0
%

0
%

2
5
%

5
0
%

7
5
%

1
0
0
%

0
%

2
5
%

5
0
%

7
5
%

1
0
0
%

0
%

2
5
%

5
0
%

7
5
%

1
0
0
%

0
%

2
5
%

5
0
%

7
5
%

1
0
0
%

0
%

2
5
%

5
0
%

7
5
%

1
0
0
%

0%

25%

50%

75%

100%

Positive predictive value

S
en

si
tiv

ity

Preprocessing

raw

 neurokit

corcodan

pantompkins1985

biosppy

cyclegan

cycleganscaled

hamilton2002

engzeemod2012

elgendi2010

bpo5f3to20

bpo5f005to42

db4

haar

sym8

B
e
s
t 
6
 d

e
te

c
to

rs
A

ll
 d

e
te

c
to

rs

Figure 1. Average PPV and Sensitivity of testing records at 50ms tolerance displayed for all detectors (bottom) in
comparison to the best 6 detectors (top) with convex hull of each preprocessing methods. The methods for preprocessing
are grouped by the common visual representation of the resulting waveform.
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Figure 2. Average lead-wise performance of the best six detection methods across the best four preprocessing techniques
(raw, Corcodan, BioSSPy, Neurokit).
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